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Abstract. For a static three-dimensional vector field U = u ( x )  the set of singular points of 
the vector function forms a smooth two-dimensional surface embedded in the three- 
dimensional space of x. When this surface is mapped into the three-dimensional space of U 
there results a surface which typically contains sharp creases, and the shape of this surface 
characterises the structure of the vector field. As the field evolves with time this singular 
surface will change, and special points in space-time can be identified where the surface 
changes its shape in a fundamental way. These changes are called events. The possible 
events are identified and shown pictorially for general vector fields and for the special case of 
irrotational fields. The pattern of events gives a morphological way of comparing, say, an 
observed field with a computed field. If the two fields have the same pattern of events their 
structures are similar and they are evolving in similar ways. 

1. Introduction 

Now that three-dimensional time-evolving vector fields without symmetry can be 
computed numerically, as for example in models of the atmosphere or oceans, the 
problem arises of comparing an observed with a computed field. Besides quantitative 
comparison at selected points, one may also ask whether the two fields have the same 
general structural features. To answer such a question we first need a way of charac- 
terising the essential morphology of an evolving three-dimensional vector field. That is 
what this paper tries to do. 

An earlier paper (Thorndike et a1 1978) has shown how the structure of a static 
two-dimensional vector field can be characterised by the singularities of the vector 
function. If the field evolves with time, distinct changes in the geometry of the singular 
set occur at certain points at certain instants. Such changes were called events. What 
kinds of event will occur naturally in a given physical situation without special symmetry 
depends on what constraints there are, if any; for example, if we are dealing with the 
velocity field of a fluid, it might be incompressible. The previous paper gave two lists of 
events in two-dimensional flows evolving with time: those that occur when there are no 
constraints, and those that occur when the field is irrotational or incompressible. In 
experimental work it is an advantage to be able to distinguish such naturally occurring 
events from the higher singularities which can only be forced by imposed symmetry or 
other conditions. Examples can be seen in the six-roll mill of Berry and Mackley (1977) 
(see also Poston and Stewart 1978, especially figure 11.28). 
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This paper extends these results for two-dimensional evolving fields to three- 
dimensional evolving fields. Events occur at specific points when the evolving three- 
dimensional singular set undergoes a distinct change in geometry. We list the events 
that will occur naturally in unconstrained and in irrotational fields. The pattern of 
events in a field constitutes a basic structure. Two fields that have the same pattern of 
events may be said to be alike, much as two animals of the same species are alike; they 
have the same structure and are developing in the same way, without being identical in 
all respects. 

2. Fields with no constraints 

The discussion to be given applies to any vector field, but to fix ideas it is helpful to think 
first of a static smoothly varying three-dimensional velocity field U = (U, U, w): 

U = U(& Y ,  f ) ,  U Y ,  f ) ,  w = w(x, y, 2). (1) 

We consider the mapping 

u:x+u  
where X represents physical space with coordinates (x, y, z )  and U represents velocity 
space with coordinates (U, v, w). Thus, each point in X is mapped into a corresponding 
image point in U according to the velocity that exists at the point in X. The singularities 
under discussion are the sets of points where the determinant of the Jacobian matrix 
d(u, U, w)/d(x, y, z )  is zero. This condition defines a set of singular points in X .  It is with 
the image in U of these points that we are concerned. If there are no constraints on the 
flow field, the kinds of stable singularities are those of any general mapping from R3 to 
R3,  namely, fold, cusp and swallowtail (Golubitsky and Guillemin 1973, p 191). In the 
image space U the folds are surfaces; they are sharply creased along lines of cusps, 
which we shall call ribs, and the ribs themselves have cusp points on them which are the 
swallowtails. 

Now let the field change with time (or any other external parameter). The singular 
figure in U will evolve and we wish to know what events will occur. To examine this 
write 

U = U(X, y ,  f ,  t ) ,  = Y ,  f ,  t ) ,  w = w(x, Y ,  2, l ) ,  T = L  (2) 

Considered as a mapping from R4 to R4, the point (x, y, z, t )  is mapped to its image 
(U, U, w, T); T is simply the time label in the image space. The list of stable singularities 
(Golubitsky and Guillemin 1973, p 191) in maps from R4 to R4 is: fold (dimension 3), 
cusp (2), swallowtail (l), butterfly (0), elliptic umbilic (0) and hyperbolic umbilic (0). In 
the standard forms for the singularities shown in table 1 at least one pair of variables in 
each case is simply equated (for example, u4 = x4). Thus the special maps (2) which have 
T = t can have all the singularities in the list. Each of them is a particular arrangement of 
fold sheets (hypersurfaces of dimension 3) in the four-dimensional image space. The 
singular set is easier to visualise if we take successive 7 = constant slices and think of the 
resulting time-evolving three-dimensional figure in U. An event will occur whenever 
the slice T = constant passes through a singular point in R4, that is, through an elliptic 
umbilic, hyperbolic umbilic or butterfly point. Thus, taking the elliptic umbilic as an 
example, at a particular instant we can expect to see three ribs come together, make 
contact instantaneously, and then separate. 
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Table 1. Stable singularities of functions from R4 to R4 

Vector components 

Singularity U1 U 3  U4 

2 Fold 7.2 x 3  x 4  

cusp 2 + x2x, 1 2  x 3  x 4  

Swallowtail x;1+x3x:+x2x1 x 2  x 3  x 4  

Butterfly x: + x 4 4  + x 3 x :  f X 2 X 1  x 2  x 3  7.4 

Elliptic umbilic x: - x : + x 3 x 1  + X &  X 1 X 2 + X 4 X I - X 3 X 2  x 3  x 4  

Hyperbolic umbilic x :  + X3X2 x: + X4X1 x 3  x 4  

But there is also another kind of event. With the time dimension present there are 
lines of swallowtails, surfaces of ribs and hypersurfaces of folds, and so events are 
possible if a 7 = constant slice should meet one of these loci tangentially-just as in R3 a 
slice tangential to a rib gives a beak-to-beak or lips event. We shall find that tangencies 
of this kind in R4 can cause two swallowtail points in R3 to come together and 
annihilate, or, reversing time, for a pair to be created and separate. Moreover, there are 
three distinct ways in which this encounter between swallowtail points can happen. In a 
similar way a tangency in R4 of a 7 = constant slice with a rib surface produces three 
distinct kinds of event involving the interaction of ribs in R3.  

The orientation of the singular figures in R4 is not completely arbitrary. Since 7 

plays a special role in the mapping (2) this is not surprising. The consequence is that 
certain directions of slicing the figures by 7 = constant are not allowed, and this limits 
the types of event that can occur. 

These descriptions can now be made more precise. To construct a time-dependent 
vector field of the form (2) having one of the singularities in table 1, one can make any 
smooth reversible transformation 

(x1, x 2 ,  x3, x4) + (x, Y, 2, t ) ,  

(u1, L I Z ,  u3, u4)+ (4  0, w9 71, 

which results in 7 = t. In the cuspoids, the first four in the table, this precludes putting 
7 = u l .  In the two umbilics it precludes both 7 = u1 and 7 = u2. These prohibitions 
embody the restriction referred to above on the orientation of the singular set in the 
image space. (If we consider the fold with two space dimensions and one time 
dimension, the fact that 7 cannot be identified with u1 means that the fold surface 
cannot be tangential to the observation plane 7 = constant at any point. This restriction 
affects higher singularities. For example, 7 = u1 for the swallowtail would orient the 
swallowtail figure in the image space so that, approaching the origin, folds would 
become parallel to 7 = constant, and this is forbidden.) 

Table 2 gives examples, constructed by using these principles, of the possible events. 
To illustrate the construction, the first entry in table 2 can be produced from the 
standard form of the cusp in table 1 by a change of coordinates of the form 

(x1, x2, x3, x4) = ( x ,  t + y 2 + &  y, 21, 

(111, U21 u3, u4) = ( U ,  7 + v + w , U, w ) .  2 2  

(Numerical coefficients must be inserted in this change of coordinates to produce the 
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Table 2. Examples of events in unconstrained vector fields. 

Vector field 

Event U V W 

(1) Elliptic rib collapse - 4 x 3 - 2 ( t + y 2 + z 2 ) x  Y z 

( 2 )  Elliptic rib collapse - 4 x 3 + 2 ( t  + y 2  +z2)x Y z 

( 3 )  Hyperbolic rib interchange - 4 x 3  - 2 ( t  - y z +  z 2 ) x  Y z 

(lips) 

(beak-to-beak) 

(lips and beak-to-beak) 

Cusp events 

Head-to-head 

Side-to-side 
Swallowtail pairs Tail-to-tail 

Elliptic umbilic 

- 5 x 4 - 3 ( t - z 2 ) x 2 - 2 y x  y z 
- 5 x 4 + 3 ( t - z 2 ) x 2 - 2 y x  y z 
- 5 x 4 - 3 y x 2 - 2 ( t - z 2 ) x  y z 

- 2 t y + 2 z x  2 

- 3 x 2 +  3 y 2  - 2 t x  - 2 z y  6 x y  

- 3 y 2 - t x  z Hyperbolic umbilic - 3 x 2  - z y  

T with uq -6x5 - 4 t x 3  - 3 . 2 ~ ~  - 2 y ~  y z 
Butterfly T with u3 - 6 x 5 - 4 y x 3  - 3 t x 2 - 2 z x  y z 

T with u2 - ~ x ' - ~ Y x ~ - ~ z x ~ - ~ ~ x  y z 

forms given in table 2. The choices of coefflcients there were made to simplify the forms 
in table 3.) 

The different ways in which a rib surface can be met tangentially by 7 = constant 
result in three distinct rib interactions which can be pictured as time-evolving figures in 
R3.  (1) Elliptic (figure 1): a pie-shaped figure in which the two surfaces are folds and the 
edge is a rib. This collapses to a point and vanishes. It is a lips event rotated in three 
dimensions. (2) Elliptic (figure 2): this is a beak-to-beak event rotated in three 
dimensions. It has the same rib Configuration as (1) but with the fold surfaces outside 
the rib instead of inside. Two fold surfaces join on a circular (elliptical) rib, the inside of 
the circle being empty. As time evolves the circle collapses and the two fold surfaces 
separate. (3) Hyperbolic (figure 3): two ribs form the branches of a hyperbola. As time 

Figure 1. Elliptic rib collapse (1). The event occurs as this surface in (U, U, w )  shrinks to a 
point and vanishes. In this and the other three-dimensional sketches which follow, the bold 
line is a rib, here an ellipse in the U = 0 plane. 
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Figure 2. Elliptic rib collapse (2). The sequence of sketches reading from left to right shows 
the singular set before, at, and after the event. The event can be reversed by changing the 
sign of in table 2. 

W 

Figure 3. Hyperbolic rib interchange. 

evolves they become the asymptotes of the hyperbola (this is the event), and then they 
separate into the other two sectors between the asymptotes. One principal section 
shows lips, while the other shows beak-to-beak. In each of these events, and in the 
others which follow, time can be reversed. 

A pair of swallowtails can meet in three ways, head-to-head (figure 4), tail-to-tail 
(figure 5 )  or side-to-side (figure 6 ) ,  depending on how 7 is allocated. 

In both the elliptic umbilic (figure 7 )  and the hyperbolic umbilic the possible 
allocations of 7 and t provide only one type of event. The hyperbolic umbilic event is 
sketched in figure l l ( a )  of Thorndike eta1 (1978). The event occurs as the swallowtail 
points S1 and Sz move together, meet, and then separate. In this case the swallowtails 
are side-to-side but antiparallel. 

In the butterfly 7 can be allocated to u2, u3 or u4 but not u1. The way in which T is 
allocated determines the orientation of the singular set in (U, v, w, 7) space. Therefore, 

Figure 4. Swallowtail pair, head-to-head. 
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7; v v v  v v x v v  
Figure 5. Swallowtail pair, tail-to-tail. 

Figure 6. Swallowtail pair, side-to-side. 

Figure 7. Elliptic umbilic. 

the sequence of three-dimensional singular sets we see by taking successive slices 
T = constant will depend on how T is allocated. We have chosen to display the butterfly 
in the form of a two-dimensional array of two-dimensional computed pictures (figure 
8). In this form two of the four control variables are the (outside) coordinates for the 
array and the remaining two are the (inside) coordinates for each ‘postage stamp.’ There 
are six ways to choose two objects from four and we present all six. Even though each of 
the six diagrams gives a complete picture of the same object in R4, there are remarkable 
differences in appearance. One should keep in mind that, because these sections by the 
coordinate planes have special symmetry, some unsymmetrical features of a more 
general section may be lost (see the swallowtail example in figure 7 of Thorndike et al 
(1978)). The sequence of three-dimensional sketches of the butterfly given in Thom 
(1975, pp 70-71) shows the time-evolving figure for the first of the three forms given in 
table 2. 

We believe that the list of events in table 2 is exhaustive but we have no formal 
proof. However, the examples given show that the events listed can indeed exist. When 
thought of as mappings from R4 to R4, each entry in table 2 is equivalent to one in table 
1, but we regard them as distinct events because of the different ways the singular sets 
are oriented with respect to the slices T = constant. Our intuitive approach meets a 
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-0.L -0.2 0 0 2  O L  w -0.2 -04 0 0 1  0.2 w 

- 0 2  -0.1 0 01 02 V -10-2 -103 0 10-3 -10-2 U 

-10-2 -10-3 o 10-3 10-2 U -0030 -0,015 o 0.015 O O ~ O U  

Figure 8. Butterfly. Diagrams (a ) ,  ( b ) ,  and ( c )  are computed from the first butterfly form in 
table 2; ( d )  and (e)  refer to the second form; (f) refers to the third form. For the second 
form no diagram is given with T, U as the outside coordinates, since it would simply be the 
transpose of the 7, w diagram for the first form-diagram (a ) .  Similarly, the 7, v and 7, w 
diagrams for the third form are redundant with diagrams ( b )  and (d).  Each diagram 
represents the same object in ( u l ,  u2, ug, u4) space; thus diagram ( a )  corresponds to outside 
coordinates u4, u3;  (b)-+u4, U > ;  (c)-+ulr u1; (d )+  u3, ut;(e)-,u3, u l ;  ( f ) - * u 2 ,  u l .  The 
locus of swallowtails can be picked out in each diagram. 



8 J F Nye and A S Thorndike 

formal difficulty here which we have not solved, namely the stability of these events as 
one-parameter families of mappings R 3 + R 3 .  This problem needs a more rigorous 
treatment. 

3. Irrotational fields 

We turn now to an example of a field subject to a constraint, namely a vector field that is 
irrotational. This case is chosen both for its physical importance (gravitational, electric 
and heat-flow fields come to mind as examples) and because the list of events can be 
deduced from catastrophe theory. We start with any one of the standard generating 
functions from catastrophe theory (we would call it a family of potentials but we need 
the word potential for another purpose) @(x, y ,  z ,  t ;  U ,  U ,  w, T ) ,  where x ,  y ,  z ,  t are state 
variables and U ,  U, w, T are controls. These functions are listed in Poston and Stewart 
(1978, p 121). If @ can be written in the form 

@(X, y ,  2, f ;  U ,  U ,  W ,  T ) = 4 ( X ,  y, 2, T ) + U X  + U y  f WZ - i f 2 + T f  (3) 

(and we shall show that it can be so written), the stationary condition 

(4) cp = @  = @  = @  - 0  x y 2 1 - 3  

where subscripts denote differentiation, implies 

U = -Q, U = -4y, w = - 4 z ,  T = f ,  

which describes an irrotational time-dependent vector field derived from the scalar 
potential 4(x, y ,  z ,  T ) .  The singularities of the gradient mapping (4) (coalescences of the 
critical points of @) are Thom’s (1975) list of catastrophes of codimension up to four: 
fold, cusp, swallowtail and butterfly, together with the elliptic, hyperbolic and parabolic 
umbilics. Each of these corresponds to a singular set in control space ( U ,  U, w, T )  and it is 
this four-dimensional figure that we have to slice with T = constant. 

At any instant the singular set in (U, U, w )  can be fold, cusp, swallowtail, or elliptic or 
hyperbolic umbilic. In ( U ,  U, w, T )  the parabolic umbilic and butterfly are points, the 
elliptic and hyperbolic umbilic and swallowtail are lines (the tracks of moving points), 
the ribs are surfaces (the tracks of moving lines), and the folds are hypersurfaces 
(dimension 3). Thus the possible events are parabolic umbilic and butterfly (as the 
T = constant slice passes through one of these points), together with events arising from 
tangencies between T = constant and one of the above loci. These latter, as we shall 
show by example, give two new pair creation or annihilation events not found in 
unconstrained fields, namely pairs of elliptic and pairs of hyperbolic umbilics. This 
means that in (U, U, w )  at, say, T <  0 there are two elliptic or two hyperbolic point 
singularities; they move together to meet at T = 0 and then disappear. We also have 
swallowtail pairs, as before, and the cusp events described previously. 

Table 3 shows examples of these events by listing time-dependent potentials 
4(x, y ,  z ,  T )  which give them. To obtain the examples we start with standard forms 
(Poston and Stewart 1978, p 121) for @(X, Y, 2, T; a, b, c,  d )  where X ,  Y, 2, T are 
state variables and a, b, c,  d are controls, and make smooth reversible changes of 
coordinates: first (X,  Y, 2, T )  + (x, y ,  z ,  t )  where a, b, c, d may appear as parameters, 
and then (a ,  b, c, d )  + ( U ,  U, w, 7) to bring @ into the form (3), an essential feature of (3) 
being that x ,  y, z appear linearly in the terms ux, vy, wz. 
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Table 3. Examples of events in irrotational vector fields. 

~ ~~~~~~~ 

Event Flow potential d(x, y ,  z,  r )  

(1) Elliptic rib collapse x 4 +  (7  + y’ + z 2 ) x ’ -  fy’ - tZ ’  

(IiDS) 

Cusp events 

. .  . 
(2) Elliptic rib collapse x 4 -  ( r +  y ’ + r ’ ) x Z - 4 y ’ - 4 z ’  

(beak-to-beak) 

(lips and beak-to-beak) 
( 3 )  Hyperbolic rib interchange ~ ~ + ( r - y ’ + z ’ ) ~ ’ - f y ’ - f ~ ’  

Head-to-head 

Side-to-side 
Swallowtail pairs Tail-to-tail 

Elliptic umbilic pair 

Hyperbolic umbilic pair 

x 3 - 3 x y z +  (7 - z 2 ) ( x 2 +  yZ) -12 ’  

x 3 +  y 3 + ( r  - 2 ’ ) x y  -42’ 

Butterfly 

Parabolic umbilic 

r with x 4  
T with x 3  
r with x‘  

r with x’ 
T with y’ - 

f X 6 +  (7 - 4 ) x 4 +  2 x 3  + y x ’ - ; y ’ - p  
- t x 8 + x 6 +  ( y  - 4 ) x 4 +  r x 3 +  zX2- ;y ’ - : z ’  

- f X 8 + f X 6 +  y x 4 +  Z x 3 +  r x ’ - f y ’ - 4 2 2  

x ’ y  + 4 y 4  + rx’ + z y Z - f z Z  
- i x 4 +  x 2 y  + y 4 +  z x 2 +  ry’-$z’ 

For the cusp events the standard form 

X 4  + aX2 + bX - $ Y 2  -$Z’-$T’ 

with the coordinate changes 

Terms involving only control variables have been dropped since they do not affect the 
stationary condition (4). The three forms in table 3 result from replacing 7 in q5 by 
7 + y  + z  , - 7 - y  - 2  , 7 - y 2 + z 2 ,  thereby adding terms in y 2 x 2  and z2x2. These 
terms make no essential difference to the cusp nature of the singularity, but they have 
the effect of bending its locus U = 0, 7 = 0 so that it is no longer a plane but becomes 
instead a curved surface tangent to 7 = 0 at the origin. 

2 2  2 2  

For the swallowtail pairs the standard form 

X5 + ax3 + bX2 + CX - $ Y 2  -&Z2 -$T2 

with coordinate changes (of a type we learned from Dr David Rand) 

(a, b, c, d )  = (*7, v,  U, w ) ,  

(a, b, c, 4 = (0 ,  7, U, w), 

2 

3 

(X,  Y , Z ,  T ) = ( x , Y - x  - b , z - d , t T a ) ,  

(X,  Y , Z ,  T ) = ( x , Y - x  - u , z - ~ ,  t - b ) ,  
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gives, respectively, 

3 2 1 2  1 2  9 = x 5 - t x 4 * t r x  + y x  - 2 y  - 2 2  

~ = - t x 6 + x s + y x 3 + T x  2 - 2 y  1 2 - 1  22 2 . 
and 

The forms in table 3 are obtained by replacing T by T - z 2 ,  thus bending the swallowtail 
locus so that it has a point of tangency with T = 0. The singular sets for the first six events 
in table 3 have been plotted and observed to have the same local structures as those in 
figures 1-6. (An identical procedure was used on page 1471 of the earlier paper to 
produce examples of the swallowtail in two space dimensions and one time dimension. 
Note that a term in x 5  was neglected in error there.) 

As shown in the earlier paper, the elliptic and hyperbolic umbilics are stable points 
in evolving two-dimensional irrotational fields. With one more space dimension the 
locus of these points is a line. Just as with the swallowtail we have inserted T - z 2  in the 
forms in table 3 for these events to bend this line so that it meets T = 0 tangentially. The 
pair events which result are illustrated in figures 9 and 10. 

4. * . A  
Figure 9. Elliptic umbilic pair. 

m ,a A m 40 A /m Am 
Figure 10. Hyperbolic umbilic pair. 

For the butterfly events, the entries in table 3 were produced from the standard form 

X 6  + a x 4 +  b X 3  + cX2+  dX -iY' - $ Z 2  -$T2 

by the coordinate changes 

(a, b, c, d )  = ( T ,  w, U, U), 
(a, h, c, d )  = (U, 7, w, U), 
(a, b. c .  d )  = (U, w, 7, U). 

(X,  Y ,Z ,  T ) - ( x , Y - x  2 - C , Z - X  3 - b , t - a ) ,  

(X, r, 2, T )  = (x ,  y - x  4 -a ,  2 --x 2 -c,  t - b ) ,  

(X, Y ,Z ,  T ) = ( x , Y - x  4 - U , Z - X  3 - 6 , t - c ) ,  
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The velocity fields given by these potentials may be obtained from the corresponding 
fields in table 2 by coordinate changes in X which are smooth and non-singular 
everywhere; for example, to obtain the first field put ( x ,  y ,  z )  = ( x ’ ,  Y ’ - x ’ ~ ,  z ’ - x ’ ~ ) .  
Since no coordinate change is needed in U, the evolving singular set in U (as shown in 
figure 8) is exactly the same whether it is calculated with the field of table 2 or the 
corresponding irrotational field of table 3. 

Similarly, the entries for the parabolic umbilic were obtained from the standard 
form 

X 2  Y + Y4 + uX2 + b Y ’ + CX + d Y - $2’ - $T2 

by the coordinate changes 

(a ,  b, c, d )  = (7, w, U, V I ,  
(a, 6, c, d )  = (w, 7, U, U ) .  

2 

2 

(X, Y, Z, T )  = ( x ,  Y ,  z - Y - 6, t - a 1, 
(X, Y,Z ,  T ) = ( x ,  Y , Z - X  - U ,  t - b ) ,  

Computed sections of the parabolic umbilic are shown in figure 11, and from these 
sections the two corresponding time-evolving figures in U have been sketched in figure 
12. The second form is quite special in that the section 7 = 0 contains the complete locus 
of beak-to-beak and lips; thus at 7 = 0 an entire line of lips and beak-to-beak appears 
momentarily. Further details of the parabolic umbilic singularity are given by Godwin 
(1971). 

4. Discussion 

We have listed the events that will occur naturally in three-dimensional vector fields as 
they evolve with time when the field is either unconstrained or irrotational. For the 
necessary proof of the stability of the singular sets in R4 we have relied on the list 
established by others for the stable singularities in maps from R4 to R4, and on Thom’s 
list of the elementary catastrophes. Our two lists of possible events have been obtained 
by considering what ways there are of slicing the singular sets by holding time constant. 
The purpose of the examples in tables 2 and 3 is to establish the existence of the events 
listed. There may be other kinds of events, but we believe not. The sections illustrated 
in the figures for the butterfly and parabolic umbilic, although numerous, are not, of 
course, exhaustive, but we hope they will serve as a guide to what one may expect to see 
in experiments. 

Our lists of events differ from that given by Wassermann (1975, p 105) for 
‘time-stable’ unfoldings, but this is not unexpected because Wassermann approaches 
what appears to be an essentially different problem. His problem is set firmly in the 
context of catastrophe theory. To give a tentative example, suppose there is a 
three-dimensional inhomogeneous body (a cloud of interstellar gas perhaps) which has 
a distribution of density p ( x ,  y ,  t, t ) ,  and suppose the physics is such that the actual 
(equilibrium) density at ( x ,  y ,  z, t )  is obtained by minimising some smooth potential 
@ ( p ;  x,  y ,  z ,  t )  with respect to p .  Thus p is the state variable and x,  y ,  z ,  t are controls. 
Distinguishing t from x ,  y ,  z,  Wassermann lists the singular sets in control space which 
correspond to degenerate critical points of @. 

Note particularly that there is no function from p to ( x ,  y ,  z ,  t)-a given p will be 
found at many points in space-time-and that the singular sets considered occur in 
space-time. Our problem is different, not only because x ,  y ,  t, t are state variables 
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Figure 11. Parabolic umbilic. Diagrams (a ) ,  ( b )  and (c) are computed from the first form for 
the parabolic umbilic in table 3 ;  (d ) ,  ( e ) ,  and (f) refer to the second form. As for the 
butterfly in figure 8, the six diagrams all represent the same object in R4: diagram ( a )  
correspondstooutsidecoordinatesa, b ;  ( b ) + a , d ;  ( c ) + a , c ;  ( d ) + b , a ; ( e ) +  b , d ; ( f ) +  b ,c .  
Thus ( a )  and ( d )  are essentially the same. The remainingsection with outside coordinates c, 
d is missing because 7, which is always chosen to be an outside coordinate, is never 
associated with either c or d .  
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Figure 12. Parabolic umbilic. ( a )  coiresponds to the first form in table 3 and to (a),  (6) and 
(c) of figure 11. ( b )  corresponds to the second form of table 3 and to ( d ) ,  ( e )  and (f) of figure 
11. E, elliptic umbilic; H, hyperbolic umbilic; S ,  swallowtail; B-B, beak-to-beak. 

rather than controls, but because we have a function from state space to control space: 
each (x, y, z ,  t )  determines a unique (U, U, w, 7) (this was ensured by the form (3)). Thus, 
there seems no reason why the lists of events should be the same. 

With only two space dimensions it was possible, by using a generating function, to 
treat flows that are either irrotational or incompressible. Rather naturally one can also 
treat two-dimensional flows that are simultaneously irrotational and incompressible (so 
that the potential obeys Laplace’s equation). In that case the stable singularities in R2 
at given time are merely points (see the Appendix), degenerate remnants of the folds 
and cusps which appear under lighter constraints. In the optical analogy (Thorndike et 
a1 1978, p 1478) the points are simply elliptic umbilic foci at infinity. When the field is 
allowed to change with time, the singular points move around in the image space but do 
not collide. 

This may be an instance of a general rule. For time-dependent two-dimensional 
flows no constraints give three different kinds of event. The constraint of being either 
irrotational or incompressible increases the number to five. But when both constraints 
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are imposed at once the number falls to zero. Richness of behaviour can depend, as in 
other contexts, on some restriction but not too much. 

With three space dimensions we have not found a way of treating incompressible 
flow. What kind of events will occur naturally in a time-evolving three-dimensional 
incompressible flow is not known; it is a problem that deserves further study. 
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Appendix. Singular points in a two-dimensional flow that is both irrotational and 
incompressible 

With potential 4 ( x ,  y )  an irrotational flow field is U = -A, z? = -c$~, and a point is 
singular if the Jacobian a(u, v ) / a ( x ,  y )  = q5xxq5yy - q5:y = 0. This equation defines a line 
(fold-line) in (x ,  y ) .  But, if the flow is also incompressible, q5xx + q5,, = 0 and a point is 
singular if -.q5xx - q5:, = 0. This implies the two equations 4 j X x  = q5xy = 0, which define 
isolated points in (x ,  y ) .  

To see that the points do not collide, first note that, since it obeys Laplace's 
equation, q5 can be expressed as the real part of any analytic function f of a complex 
variable C = x + iy. The condition for a singular point is then f"([) = 0. The roots of this 
equation are isolated points in the complex plane. With time the points will move in the 
plane; at special times the real parts of two roots will be equal and at others the 
imaginary parts will be equal, but typically not both at the same time. So the points will 
not collide unless a further constraint is applied. 
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